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1 Introduction 
Many models of geodetic phenomena, in particular models created by the National Geodetic 
Survey (NGS), are represented as data on a spatial grid.  Examples include geoid undulations, 
deflections of the vertical, surface gravity, datum transformations and crustal deformation.  In 
some cases, a second grid is also created, containing standard deviations of the data on the first 
grid.  These paired grids are often used in NGS products or services, in conjunction with an 
interpolation scheme, to provide values and standard deviations of those values, at points which 
do not lie on the grid.  Though these models often have analytical forms, the direct evaluations 
often involve intense computations that typical users cannot afford. Interpolating from pre-
computed grids saves computation time, though it may introduce additional errors through the 
process of interpolation itself.  But these interpolation errors are controllable and predictable 
most of the time.    

The standard procedure is to interpolate from a 2-D data grid to provide a data estimate at a point 
of interest in the 2-D domain, and similarly interpolate from the standard deviation grid to 
provide an estimated standard deviation of the interpolated data value.  This paper discusses the 
mathematical difficulties involved in accurately using a grid of standard deviations to compute 
the standard deviation of an interpolated value from a grid of data. Through out the rest of the 
paper, all of the grids are 2-D grids. 

2 The mathematics of bilinear interpolation 
This paper will use bilinear interpolation to examine the right and wrong ways to compute the 
standard deviation of an interpolated data value.  However, the conclusions are easily extendable 
to other interpolation methods, such as biquadratic (Smith, 2020), which can (like bilinear) be 
mathematically re-arranged as the weighted sum of values from grid nodes in a finite window 
that surrounds the interpolation point. 

Consider a grid of data values, 𝑣𝑣, where the grid is spaced evenly in degrees (not meters), with 
the spacing being Δ𝜙𝜙 in N/S and Δ𝜆𝜆 in E/W.  Consider also a companion grid with the same 
boundaries and spacing, full of standard deviations of 𝑣𝑣, called 𝜎𝜎𝑣𝑣.  Now assume that one is 
interested in an interpolated value of 𝑣𝑣 at some location (𝜙𝜙, 𝜆𝜆) which will be called the “point of 
interest” or POI.  If bilinear interpolation is used, a 2 × 2 window1 (Δ𝜙𝜙 × Δ𝜆𝜆) of grid nodes 
which surrounds (𝜙𝜙, 𝜆𝜆) is identified and then the interpolation equations are used to interpolate 
to (𝜙𝜙, 𝜆𝜆).  Although the method of bilinear interpolation is well-established (e.g. Press et al, 
1992), it is not always presented as a weighted sum of grid nodes.  However, that form is the 
most useful for the purposes of this paper, and takes this form: 

𝑣𝑣 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

. (1) 

 

 
1 Bilinear interpolation uses a 2 × 2  window, biquadratic a 3 × 3  window, etc. 
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In equation 1, 

 𝑤𝑤𝑖𝑖𝑖𝑖 are the normalized weights for each grid node, 

 𝑣𝑣𝑖𝑖𝑖𝑖 are the data values on each grid node, and 

 𝑣𝑣 is the interpolated data value at the POI. 

The weights, 𝑤𝑤𝑖𝑖𝑖𝑖, are fully derived in the appendix.  The data values from the grid nodes are 
from the 2 × 2 window around the POI.   

By way of example, consider the latitude transformation from NADCON 5.0 (Smith and Bilich, 
2017) between NAD 27 and NAD 83(1986) within CONUS (though any product with pairs of 
data/standard deviation grids would suffice).  If the POI is at (𝜙𝜙, 𝜆𝜆) = (40.2°, 290.2°), and a 
2 × 2 window has been defined around that point, then the values from the data grid, and from 
the standard deviation grid, as well as the weights (based upon the formula above) are all shown 
in Figure 1. 

 

Figure 1:  Interpolation windows around a point of interest from a data grid taken from 
NADCON 5 

The bilinearly interpolated data value at the POI is easily computed using (1), with the values 
seen in Figure 1.  This computation is: 

𝑣𝑣 = (0.04 × 14.73) + (0.16 × 14.85) + (0.16 × 14.47) + (0.64 × 14.57) = 𝟏𝟏𝟏𝟏.𝟔𝟔𝟏𝟏 (2) 

Equation 1 is correct for computing an interpolated data value (𝑣𝑣) from a grid.  However, it is 
not correct if it is used to compute the standard deviation of the interpolated data value from a 
grid of standard deviations.  That is, if we have a grid of standard deviations provided on the 
same grid as the original data values, and if 𝜎𝜎𝑣𝑣 represents standard deviation of 𝑣𝑣, we claim: 
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𝜎𝜎𝑣𝑣 ≠��𝑤𝑤𝑖𝑖𝑖𝑖𝜎𝜎𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

. (3) 

It should be pointed out that, although mathematically incorrect, many existing and previous 
NGS products use the right side of (3) to provide users with 𝜎𝜎𝑣𝑣.   

The correct procedure to compute the standard deviation of an interpolated value is to apply the 
law of error propagation (Snow, 2021) to (1), including the full use of covariances.  However, the 
non-equivalence in (3) is true whether covariances exist or not.  To make this point, assume for 
the moment that no covariances exist, and apply the law of error propagation to (1).  This would 
yield: 

𝜎𝜎𝑣𝑣 = �𝐷𝐷{𝑣𝑣} = �𝐷𝐷 ���𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

� = ���𝐷𝐷�𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

= ���𝑤𝑤𝑖𝑖𝑖𝑖2𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

≠��𝑤𝑤𝑖𝑖𝑖𝑖�𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

= ��𝑤𝑤𝑖𝑖𝑖𝑖𝜎𝜎𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

. 

(4) 

Note the “≠” in the middle of (4), a reminder that square roots are not distributive over addition.  
We therefore conclude that bilinearly interpolating from a grid of standard deviations 
(∑2 ∑2𝑖𝑖=1 𝑖𝑖=1𝑤𝑤𝑖𝑖𝑖𝑖𝜎𝜎𝑣𝑣𝑖𝑖𝑖𝑖) of some data does not yield the actual standard deviation (𝜎𝜎𝑣𝑣) of a bilinearly 
interpolated value of that data (without regard for what that data is).  This same conclusion can 
be drawn whether the interpolation is bilinear, biquadratic, or any other method that takes the 
form of a weighted sum of values drawn from the nodes of a grid. 

In order to properly compute the standard deviation of the interpolated value, continue to apply 
the law of error propagation to (1), this time allowing for covariances, as: 

𝜎𝜎𝑣𝑣 = �𝐷𝐷{𝑣𝑣} = �𝐷𝐷���𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

� = ���𝐷𝐷�𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

= ����𝑤𝑤𝑖𝑖𝑖𝑖2𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

�+ �����𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑘𝑘𝑘𝑘𝐶𝐶�𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑘𝑘𝑘𝑘�
2

𝑘𝑘=1

2

𝑘𝑘=1

2

𝑖𝑖=1

2

𝑖𝑖=1

   ∀ {𝑖𝑖, 𝑗𝑗} ≠ {𝑘𝑘, 𝑙𝑙}�. 

(5) 

In the case of bilinear interpolation, this means that four variances and six covariances must be 
known to properly compute the standard deviation, 𝜎𝜎𝑣𝑣, of the interpolated data value, 𝑣𝑣.  With a 
grid of standard deviations, the four variances can easily be computed by squaring the standard 
deviations.  However, if there is no covariance information between the grid nodes, those six 
covariances will not be available and (5) cannot be properly evaluated.  In cases like this, where 
no covariances are known, it is often the standard procedure to assume they are zero.  Section 4 
will investigate the magnitude of error which comes with that assumption.  However, before 
doing so, it will be instructive to consider the somewhat philosophical question surrounding the 
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assumption that covariances are zero between standard deviations on grid nodes which all came 
from the same input data sets and gridding procedure. 

3 Does creating grids create correlations and covariances? 
The argument is made that if grids of data, and grids of standard deviations of that data, are 
created from data sources at non-gridded locations, that this process creates distance-dependent 
correlations in both the data grids and standard deviation grids.   If the method of creating the 
grids is least-squares collocation (Moritz, 1980), then this argument is proven mathematically.  
However even other methods of gridding should be expected to cause correlations.  A cogent 
defense of this argument is found in Brown (2018). 

The method of gridding used to create NADCON 5 grids (both data and standard deviations) was 
splines-in-tension (Smith and Wessel, 1990), using data at geodetic control points that are 
obviously not on a grid.  This method does not (in fact, cannot) produce a covariance function 
between the gridded standard deviations.  However, an argument is made that the standard 
deviations on the grid must be correlated.   

The argument goes like this: 

Consider a hypothetical situation where the NADCON gridding process somehow created a grid 
of standard deviations, where the standard deviations on each grid node are uncorrelated from 
one another (thus there are no covariances)2.  In such a case, the value of standard deviation at 
any one grid node cannot be predicted by values of standard deviation on other grid nodes.  
Because of this failure of one grid node value to imply another grid node value, a map of such an 
uncorrelated grid would show no patterns.  In essence, it should look like a “snowy TV screen”.  
However, the choropleth maps of the gridded standard deviations (Smith and Bilich, 2017) 
absolutely show patterns, primarily driven by both the location and quality of the input data sets.  
The standard deviation grid for latitude transformations from NAD 27 to NAD 83(1986) in 
CONUS has been reproduced in Figure 2. 

 
2 How such a situation might occur is admittedly difficult, if not impossible, to imagine.  Nonetheless, the near 
impossibility of the hypothesis is what lends weight to the argument in the end. 
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Figure 2:  Gridded standard deviations in NADCON 5 for latitude shifts from NAD 27 to 
NAD 83(1986) in CONUS 

Since these patterns exist, the hypothetical case of “no covariances” is rejected, and it is 
concluded that some covariances must exist between the standard deviations on grid nodes.   

Having concluded that correlations (and thus covariances) must exist in a grid of standard 
deviations, it is unfortunately true that in all cases of current NGS products and services that the 
correlation function, and its associated covariance function, are not available.   

But can those functions be deduced?  Consider the question:  Given only a grid of data and a grid 
of the standard deviations of that data, with no further information, is it possible to derive the 
correct covariances (or even a simple empirical estimate of them) which should be used in (5)?  
This question was posed to various geodetic experts (Dennis Milbert, personal communication; 
Kyle Snow, personal communication; Nicholas Brown, personal communication) and the results, 
though not conclusive, seem to point more to “no” than “yes”.  Clearly further investigation into 
this question is warranted, but it is not pursued in this memorandum. 

But the following conundrum still remains:  Non-zero correlations (and thus covariances) must 
exist for any gridding process which creates a grid of standard deviations, but in the absence of 
believable correlation (or covariance) information, covariances often are treated as zero.   

This conundrum cannot be resolved without some knowledge of the correlations and/or 
covariances.  Assuming that knowledge remains elusive, the best that can be done is to 
understand the impact of assuming zero covariances, and determine on a case-by-case basis 
whether the numerical impact of that assumption is acceptable.   The next section explores the 
situation through numerical examples. 
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4 Some numerical examples 
Consider the gridded data and standard deviations in Figure 1, and the desire to compute the true 
standard deviation of the interpolated value, 𝜎𝜎𝑣𝑣, using (5).  Missing from (5) are the six 
covariances representing all combinations of pairs of grid nodes.  As mentioned earlier, the 
correlations (and thus covariances) between any pair of grid nodes may be simple, complicated, 
or something in between, but in general it is clear that they are not zero.  Without further 
information to go on, in order to better understand the impact of setting covariances to zero, we 
will consider four hypothetical cases:  that the grid nodes are (a) strongly correlated (b) 
moderately correlated (c) weakly correlated or (d) uncorrelated.  This last, though argued to be 
untrue (section 3) is also the most frequently used assumption and will serve as a numerical 
baseline against the other three cases. 

Without attempting to justify numbers with data, Table 1 will reflect the four cases.  Correlations 
are used, rather than covariances, as they are always bounded in the domain +1 to -1, whereas 
covariances will carry a range that is reflective of the variances themselves. 

Table 1:  Simulated correlations for four possible cases 

 Strong Moderate Weak None 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.99 0.50 0.10 0.00 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.99 0.50 0.10 0.00 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.95 0.40 0.05 0.00 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.95 0.40 0.05 0.00 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.99 0.50 0.10 0.00 
 𝝆𝝆𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏 0.99 0.50 0.10 0.00 

Note that in all cases, the correlations along the shorter window edges were assumed higher than 
correlations across the longer diagonals of the window, reflecting an assumed falling-off of the 
correlation function with longer distances. 

From these values, and the variances, covariances can be computed from this equation: 

𝜎𝜎𝑣𝑣𝑖𝑖𝑖𝑖,𝑣𝑣𝑘𝑘𝑘𝑘 = 𝜌𝜌𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘𝑘𝑘 (6) 
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Table 2:  Simulated covariances for four cases 

 Strong Moderate Weak None 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.356004 0.17980 0.03596 0.00 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.378972 0.19140 0.03828 0.00 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.374680 0.15776 0.01972 0.00 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.388740 0.16368 0.02046 0.00 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.417384 0.21080 0.04216 0.00 
𝝈𝝈𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏 0.444312 0.22440 0.04488 0.00 

Inserting the correlations seen in Table 1, and the standard deviations at grid nodes seen in 
Figure 1, into (6), the covariances for the four cases were computed and are shown in Table 2. 



These covariances can be inserted into (5) to yield 𝜎𝜎𝑣𝑣.  However, note in (5) that the weighted 
sum of the variances will be identical, no matter what the covariances are.  For conciseness, call 
this portion “𝑞𝑞”.  That is, using the weights and standard deviations (squared to make variances) 
of the four grid nodes, as seen in Figure 1, we can compute the variance-specific portion of (5), 
𝑞𝑞: 

𝑞𝑞 = ��𝑤𝑤𝑖𝑖𝑖𝑖2𝐷𝐷�𝑣𝑣𝑖𝑖𝑖𝑖�
2

𝑖𝑖=1

2

𝑖𝑖=1

= (0.0016 × 0.3364) + (0.0256 × 0.3844) + (0.0256 × 0.4356)
+ (0.4096 × 0.4624) = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟎𝟎𝟐𝟐𝟏𝟏𝟐𝟐. 

(7) 

We now write the covariance portion of (5), which will be called 𝑟𝑟, as: 

𝑟𝑟 = ����𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑘𝑘𝑘𝑘𝐶𝐶�𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑘𝑘𝑘𝑘�
2

𝑘𝑘=1

2

𝑘𝑘=1

2

𝑖𝑖=1

2

𝑖𝑖=1

   ∀ {𝑖𝑖, 𝑗𝑗} ≠ {𝑘𝑘, 𝑙𝑙}

= 𝑤𝑤11𝑤𝑤12𝐶𝐶{𝑣𝑣11,𝑣𝑣12} + 𝑤𝑤11𝑤𝑤21𝐶𝐶{𝑣𝑣11,𝑣𝑣21} + 𝑤𝑤11𝑤𝑤22𝐶𝐶{𝑣𝑣11,𝑣𝑣22}
+ 𝑤𝑤12𝑤𝑤11𝐶𝐶{𝑣𝑣12,𝑣𝑣11} + 𝑤𝑤12𝑤𝑤21𝐶𝐶{𝑣𝑣12,𝑣𝑣21} + 𝑤𝑤12𝑤𝑤22𝐶𝐶{𝑣𝑣12,𝑣𝑣22}
+ 𝑤𝑤21𝑤𝑤11𝐶𝐶{𝑣𝑣21,𝑣𝑣11} + 𝑤𝑤21𝑤𝑤12𝐶𝐶{𝑣𝑣21,𝑣𝑣12} + 𝑤𝑤21𝑤𝑤22𝐶𝐶{𝑣𝑣21,𝑣𝑣22}
+ 𝑤𝑤22𝑤𝑤11𝐶𝐶{𝑣𝑣22,𝑣𝑣11} + 𝑤𝑤22𝑤𝑤12𝐶𝐶{𝑣𝑣22,𝑣𝑣12} + 𝑤𝑤22𝑤𝑤21𝐶𝐶{𝑣𝑣22,𝑣𝑣22}
= 𝟏𝟏[𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏} + 𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏} + 𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏}
+ 𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏} + 𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏} + 𝒘𝒘𝟏𝟏𝟏𝟏𝒘𝒘𝟏𝟏𝟏𝟏𝑪𝑪{𝒗𝒗𝟏𝟏𝟏𝟏,𝒗𝒗𝟏𝟏𝟏𝟏}]. 

(8) 

The value of 𝑟𝑟 depends on which case is being considered.  Using the covariances from the 
above table, each value of 𝑞𝑞 was computed, added to 𝑟𝑟 and then a square root taken to compute 
the standard deviation.  The results are in Table 3. 

Table 3:  Contributions of variances, covariances, their sum, and final standard deviation of 
interpolated value 𝒗𝒗 

 Strong Moderate Weak None 
𝑞𝑞 0.210929 0.210929 0.210929 0.210929 
𝑟𝑟 0.224970 0.110338 0.0208333 0.000000 

𝑞𝑞 + 𝑟𝑟 0.435899 0.321267 0.2317623 0.210929 
𝜎𝜎𝑣𝑣 0.660 0.567 0.481 0.459 

 

Table 3 contains formally computed standard deviations of the interpolated data value, using (5), 
based on a-priori weights, variances and four different (assumed known) sets of correlations.   

There is, of course, another method for computing (or, more accurately, “approximating”) the 
standard deviation of an interpolated data value, and that is to simply use bilinear interpolation 
from the grid of standard deviations, using (1).  That method is, as mentioned earlier, encoded in 
many NGS products and services.  To use that method, we apply the weights and gridded 
standard deviations seen in Figure 1 to (1) and get the approximate standard deviation seen in 
(9). 

𝜎𝜎𝑣𝑣 = (0.04 × 0.58) + (0.16 × 0.62) + (0.16 × 0.66) + (0.64 × 0.68) = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔. (9) 

9 
 



 

From (9) and Table 3, certain conclusions can be drawn.   

The first is that the value of 𝜎𝜎𝑣𝑣 in (9), is very close to that in the “strongly correlated” case.  In 
fact, if the correlations between grid nodes were actually set exactly to 1.0, then the value of 𝜎𝜎𝑣𝑣 
obtained through (5) would be exactly 0.663, perfectly matching that from (9).   

This leads to a second conclusion:  computing 𝜎𝜎𝑣𝑣 by bilinearly interpolating from the grid of 
standard deviations, though called a “mathematical difficulty” earlier in the paper, could more 
accurately be called “mathematically correct if and only if all of the standard deviations in each 
grid node were perfectly correlated with each other grid node.”  As it seems unlikely that perfect 
correlation will always exist between all grid nodes, and yet it also seems likely that the 
correlation between grid nodes may be quite high, it may be concluded that computing 𝜎𝜎𝑣𝑣 by 
using bilinear interpolation from a grid of standard deviations is reasonable, though slightly too 
pessimistic.  

The third conclusion is this:  if the correlations between standard deviations on grid nodes are 
treated as exactly zero (a common assumption in the absence of true correlation information), 
then the computed 𝜎𝜎𝑣𝑣 value, using the rigorous method in (5), will yield the smallest 𝜎𝜎𝑣𝑣 values in 
all of these examples.  However, as argued in section 3, it is impossible for the standard 
deviations to be completely uncorrelated in most gridding methods.  In fact, it is re-iterated that 
the correlation is likely to be quite high.  Therefore, it is concluded that treating the correlations 
as zero yields a value of 𝜎𝜎𝑣𝑣 that is significantly too optimistic. 

Therefore, in the absence of true correlation (or covariance) functions, and based solely on the 
reasoning above, it is concluded that: 

the application of bilinear interpolation to a standard deviation grid, while slightly 
pessimistic, yields a value of 𝜎𝜎𝑣𝑣 closer to truth than formally computing it under the 
assumption of no covariances. 

5 Biquadratic and other interpolations 
The previous conclusions can all be derived from other interpolation methods, provided they can 
be written as some weighted sum of values on grids.  For example, biquadratic interpolation 
(Smith, 2020), which uses a 3 × 3 grid around a POI, can be rearranged in the following way: 

𝑣𝑣 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

3

𝑖𝑖=1

3

𝑖𝑖=1

. (10) 

The equations for computing the weights in (10) are more complicated than those for bilinear 
and can be found in the appendix.  As before, the proper way to get 𝜎𝜎𝑣𝑣 for an interpolated 𝑣𝑣 
value that comes from (10), is to apply error propagation to (10), resulting in 9 variances and 36 
covariances, and using a known covariance function.  But, if that function is unavailable, then 
biquadratically interpolating off of a grid of standard deviations will, like bilinear, yield a value 
that is slightly pessimistic but also closer to the truth than using formal error propagation and 
setting the covariances to zero. 
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6 Application to differences 
Briefly, the idea of differences of interpolated values is addressed.  This is done only to introduce 
the topic, for it is far more complicated than that of a single point, and requires its own study and 
report. 

Consider again some grid of data and its grid of standard deviations, and consider two points of 
interest, 𝐴𝐴 and 𝐵𝐵, each within the bounds of the grids, but each separated by a distance far 
enough that their interpolation windows are different.  If the interpolated values at 𝐴𝐴 and 𝐵𝐵 are 
𝑣𝑣𝐴𝐴 and 𝑣𝑣𝐵𝐵, and someone were interested in not only their difference, but also the standard 
deviation of that difference, then some significant difficulties arise. 

For now, just to avoid the complicating factors that come with interpolation, let us assume that 𝐴𝐴 
and 𝐵𝐵 happen to fall exactly on grid nodes.  Then, the standard deviation of the difference 
between 𝑣𝑣𝐴𝐴 and 𝑣𝑣𝐵𝐵 is: 

𝜎𝜎𝑣𝑣𝐵𝐵−𝑣𝑣𝐴𝐴 = �𝐷𝐷{𝑣𝑣𝐵𝐵 − 𝑣𝑣𝐴𝐴} = �𝐷𝐷{𝑣𝑣𝐴𝐴} + 𝐷𝐷{𝑣𝑣𝐵𝐵} − 2𝐶𝐶{𝑣𝑣𝐴𝐴, 𝑣𝑣𝐵𝐵} (11) 

where 
𝐶𝐶{𝑣𝑣𝐴𝐴, 𝑣𝑣𝐵𝐵} = 𝜌𝜌𝑣𝑣𝐴𝐴,𝑣𝑣𝐵𝐵�𝐷𝐷{𝑣𝑣𝐴𝐴}�𝐷𝐷{𝑣𝑣𝐵𝐵} 

(12) 

In the previous section, where the correlation needed to be considered only over very short 
distances (just between grid nodes in an interpolation window), it was easy enough to rationalize 
that the correlation coefficient would be “quite high”.  However, in this case, no such simple 
assumption can be taken.  It cannot be said, in general, whether the correlation in the above 
equation is high, medium, low, zero, nor whether it is positive or negative. 

In nearly every case where a correlation is unknown, it is set to zero, along with the covariance.  
And as can be seen in (11), setting the covariance to zero means that a standard deviation of a 
difference of values will be too large (if the covariance is positive) or too small (if the covariance 
is negative).   

Nothing further will be said in this report about this issue, except this: when creating gridded 
models, it behooves the modeler to document the covariance and correlation functions and 
provide them as part of the gridded data and gridded standard deviations.  Barring that, either 
some method of empirically computing the proper covariances from the two grids must be found, 
or the assumption of a zero covariance must be used and its consequences accepted. 

 

7 Conclusions 
This memorandum has explored the problem of correctly determining the standard deviation of a 
value that has been interpolated off of a grid, assuming that a grid of data and a grid of standard 
deviations of that data exist.  It was stated that the mathematically correct way to do so was to 
apply error propagation to the interpolation equation itself.  However, this required knowledge of 
the covariances between standard deviations at grid nodes, something generally unavailable. 
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It was deduced that such a covariance should not be zero, though it is often a common practice to 
assume covariances are zero when no other information about them exists.  It was further 
postulated that, at least in the short distances of grid nodes, a correlation should not only exist 
but be close to 1.0.  However, no method could be found to adequately compute the true 
correlation function based solely upon the two grids. 

Further, it was demonstrated that the bilinear interpolation equation itself, if applied to gridded 
standard deviations, inherently carries with it the assumption that the correlations between grid 
nodes must be exactly 1.0. 

Therefore, the conclusion of this report is that, in the absence of true information about 
covariances and correlations, interpolating from a grid of standard deviations, while slightly 
pessimistic, is both easy to do and provides an estimate of the true standard deviation of the 
interpolated data value that is closer to the truth than using formal error propagation and setting 
the covariances to zero. 
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9 Appendix:  Deriving the weight-based interpolation equations  
The equations for interpolating from a grid, when using a window of points that is a sub-set of 
the entire grid, can generally always be broken down into the weighted sum of the values at each 
grid node of the window.  This appendix will derive those weights for the two most popular 
interpolation algorithms in NGS products and services, bilinear and biquadratic.  

Though general discussion of interpolation from a grid often uses 𝑋𝑋 and 𝑌𝑌 as the axes, this 
appendix will use longitude, 𝜆𝜆, rather than 𝑋𝑋 and latitude, 𝜙𝜙, rather than 𝑌𝑌.  The terms “evenly 
spaced” will mean that separations between parallels, Δ𝜙𝜙, will be constant (in degrees) and 
separations between meridians, Δ𝜆𝜆, will be constant (in degrees), and not that they are constant 
in distance.  Thus, convergence of the meridians is ignored. 

 

9.1 Bilinear 
The bilinear interpolation equations are fairly well established.  A complete discussion of them 
can be found in Press et al. (1992).  Because it will be convenient to draw parallels to the next 
section (biquadratic), this section will approach bilinear in a very specific way.  For reference, 
see Figure 1 from earlier in this report.   

The steps for bilinear interpolation can be summed up as: 

1) Begin with a grid of evenly spaced data, bounded by 𝜙𝜙𝑁𝑁, 𝜙𝜙𝑆𝑆, 𝜆𝜆𝑊𝑊, 𝜆𝜆𝐸𝐸 and with spacings of 
Δ𝜙𝜙 and Δ𝜆𝜆.  Each value at a grid node will be given the name 𝑣𝑣𝑖𝑖,𝑖𝑖, for each row (𝑖𝑖) and 
column (𝑗𝑗) of the node. 

2) Choose a point of interpolation, POI, (𝜙𝜙, 𝜆𝜆) which falls within the grid boundaries. 
3) Find a 2 × 2 window of evenly spaced gridded data around the POI.  Give the latitudes, 

longitudes and values of the grid nodes these variables:   (𝜙𝜙1, 𝜆𝜆1) with data value 𝑣𝑣1,1, 
(𝜙𝜙1, 𝜆𝜆2) with data value 𝑣𝑣1,2, (𝜙𝜙2, 𝜆𝜆1) with data value 𝑣𝑣2,1 and (𝜙𝜙2, 𝜆𝜆2) with data value 
𝑣𝑣2,2. 

4) Fit an east-west line through the southernmost two points.  Find the point on that line 
corresponding to 𝜆𝜆, which we call point 𝐴𝐴.  Evaluate that line at 𝐴𝐴 to get 𝑣𝑣𝐴𝐴, at (𝜙𝜙1, 𝜆𝜆). 

5) Fit an east-west line through the northernmost two points.  Find the point on that line 
corresponding to 𝜆𝜆, which we call point 𝐵𝐵.  Evaluate that line at 𝐵𝐵 to get 𝑣𝑣𝐵𝐵, at (𝜙𝜙2, 𝜆𝜆). 

6) Fit a north-south line through points A and B.  Find the point on that line corresponding 
to 𝜙𝜙, which is our POI.   Evaluate that line at the POI to get 𝑣𝑣, at (𝜙𝜙, 𝜆𝜆). 

The mathematics of these steps yields the following equations. 

Let any general line be written as: 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏. (13) 

Then for the south line: 
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𝑎𝑎1 =
1
Δ𝜆𝜆

�𝑣𝑣1,1[𝜆𝜆1 + Δ𝜆𝜆] − 𝑣𝑣1,2𝜆𝜆1�, (14) 

𝑏𝑏1 =
1
Δ𝜆𝜆

�𝑣𝑣1,2 − 𝑣𝑣1,1�, (15) 

𝑣𝑣𝐴𝐴 =
1
Δ𝜆𝜆

�𝑣𝑣1,1[𝜆𝜆1 + Δ𝜆𝜆] − 𝑣𝑣1,2𝜆𝜆1� +
1
Δ𝜆𝜆

�𝑣𝑣1,2 − 𝑣𝑣1,1�𝜆𝜆 = 𝑣𝑣1,1 −
(𝜆𝜆 − 𝜆𝜆1)�𝑣𝑣1,1 − 𝑣𝑣1,2�

Δ𝜆𝜆
. 

(16) 

 

And for the north line: 

𝑎𝑎2 =
1
Δ𝜆𝜆

�𝑣𝑣2,1[𝜆𝜆1 + Δ𝜆𝜆] − 𝑣𝑣2,2𝜆𝜆1�, (17) 

𝑏𝑏2 =
1
Δ𝜆𝜆

�𝑣𝑣2,2 − 𝑣𝑣2,1�, (18) 

𝑣𝑣𝐵𝐵 =
1
Δ𝜆𝜆

�𝑣𝑣2,1[𝜆𝜆1 + Δ𝜆𝜆] − 𝑣𝑣2,2𝜆𝜆1� +
1
Δ𝜆𝜆

�𝑣𝑣2,2 − 𝑣𝑣2,1�𝜆𝜆

= 𝑣𝑣2,1 −
(𝜆𝜆 − 𝜆𝜆1)�𝑣𝑣2,1 − 𝑣𝑣2,2�

Δ𝜆𝜆
. 

(19) 

 

And the final line through points A and B: 

𝑎𝑎 =
1
Δ𝜙𝜙

(𝑣𝑣𝐴𝐴[𝜙𝜙1 + Δ𝜙𝜙] − 𝑣𝑣𝐵𝐵𝜙𝜙1), (20) 

𝑏𝑏 =
1
Δ𝜙𝜙

(𝑣𝑣𝐵𝐵 − 𝑣𝑣𝐴𝐴), (21) 

𝑣𝑣 =
1
Δ𝜙𝜙

(𝑣𝑣𝐴𝐴[𝜙𝜙1 + Δ𝜙𝜙] − 𝑣𝑣𝐵𝐵𝜙𝜙1) +
1
Δ𝜙𝜙

(𝑣𝑣𝐵𝐵 − 𝑣𝑣𝐴𝐴)𝜙𝜙

=
(Δ𝜙𝜙 − 𝜙𝜙 + 𝜙𝜙1)(Δλ − 𝜆𝜆 + 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
𝑣𝑣1,1 +

(Δ𝜙𝜙 − 𝜙𝜙 + 𝜙𝜙1)(𝜆𝜆 − 𝜆𝜆1)
Δ𝜙𝜙Δ𝜆𝜆

𝑣𝑣1,2

+
(𝜙𝜙 − 𝜙𝜙1)(Δλ − 𝜆𝜆 + 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
𝑣𝑣2,1 +

(𝜙𝜙 − 𝜙𝜙1)(𝜆𝜆 − 𝜆𝜆1)
Δ𝜙𝜙Δ𝜆𝜆

𝑣𝑣2,2. 

(22) 

 

Thus, the bilinear interpolation weights can be inferred as: 

 

𝑤𝑤1,1 =
(Δ𝜙𝜙 − 𝜙𝜙 + 𝜙𝜙1)(Δλ − 𝜆𝜆 + 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
, (23) 

 



𝑤𝑤1,2 =
(Δ𝜙𝜙 − 𝜙𝜙 + 𝜙𝜙1)(𝜆𝜆 − 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
, (24) 

𝑤𝑤2,1 =
(𝜙𝜙 − 𝜙𝜙1)(Δλ − 𝜆𝜆 + 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
, (25) 

𝑤𝑤2,2 =
(𝜙𝜙 − 𝜙𝜙1)(𝜆𝜆 − 𝜆𝜆1)

Δ𝜙𝜙Δ𝜆𝜆
. (26) 

 

Therefore, bilinear interpolation may be reduced to: 

𝑣𝑣𝑏𝑏𝑖𝑖𝑘𝑘𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

2

𝑖𝑖=1

 (27) 

using the weights above.  Note that the sum of the bilinear weights will always equal 1.   

 

9.2 Biquadratic 
 

The method of biquadratic interpolation is less well documented in the literature than bilinear, 
though a complete exposition of it can be found in Smith (2020).  Missing from that document, 
though, is the restructuring of the biquadratic interpolation method into the sum of weighted grid 
nodes.  This section will summarize restructuring, much in the same way as in the previous 
section.  However, as the details get a bit tedious, some will be excluded. 

The basic  

The steps for biquadratic interpolation can be summed up as: 

1) Begin with a grid of evenly spaced data, bounded by 𝜙𝜙𝑁𝑁, 𝜙𝜙𝑆𝑆, 𝜆𝜆𝑊𝑊, 𝜆𝜆𝐸𝐸 and with spacings of 
Δ𝜙𝜙 and Δ𝜆𝜆.  Each value at a grid node will be given the name 𝑣𝑣𝑖𝑖,𝑖𝑖, for each row (𝑖𝑖) and 
column (𝑗𝑗) of the node. 

2) Choose a point of interpolation, POI, (ϕ, λ) which falls within the grid boundaries. 
3) Find a 3 × 3 window (see Figure 3) of evenly spaced gridded data around the POI.  Give 

the latitudes, longitudes and values of the grid nodes the variables: (𝜙𝜙𝑖𝑖, 𝜆𝜆𝑖𝑖) with value 𝑣𝑣𝑖𝑖,𝑖𝑖 
for all {𝑖𝑖, 𝑗𝑗} ∈ {1,2,3}. 

4) Fit an east-west parabola through the southernmost three points.  Find the point on that 
parabola corresponding to 𝜆𝜆, which we call point 𝐴𝐴.  Evaluate that parabola at 𝐴𝐴 to get 
𝑣𝑣𝐴𝐴, at (𝜙𝜙1, 𝜆𝜆). 

5) Fit an east-west parabola through the middle three points.  Find the point on that parabola 
corresponding to 𝜆𝜆, which we call point 𝐵𝐵.  Evaluate that parabola at 𝐵𝐵 to get 𝑣𝑣𝐵𝐵, at 
(𝜙𝜙2, 𝜆𝜆). 
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6) Fit an east-west parabola through the northernmost three points.  Find the point on that 
parabola corresponding to 𝜆𝜆, which we call point 𝐶𝐶.  Evaluate that parabola at 𝐶𝐶 to get 
𝑣𝑣𝐶𝐶, at (𝜙𝜙3, 𝜆𝜆). 

7) Fit a north-south parabola through points 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶.  Find the point on that parabola 
corresponding to 𝜙𝜙, which is our POI.   Evaluate that parabola at the POI to get 𝑣𝑣, at 
(𝜙𝜙, 𝜆𝜆). 

 

Figure 3:  An example of a 𝟔𝟔 × 𝟔𝟔 window used in biquadratic interpolation. 
The mathematics of these steps yields the following equations. 

Let any general parabola be written as: 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑏𝑏2. (28) 

For the southernmost parabola: 

𝑎𝑎1 =
1

2Δ𝜆𝜆2
�𝑣𝑣1,1�2Δ𝜆𝜆2 + 3𝜆𝜆1Δ𝜆𝜆 + 𝜆𝜆1

2� + 𝑣𝑣1,2�−4𝜆𝜆1Δ𝜆𝜆 − 2𝜆𝜆1
2�

+ 𝑣𝑣1,3�𝜆𝜆1Δ𝜆𝜆 + 𝜆𝜆1
2��, 

(29) 

𝑏𝑏1 =
1

2Δ𝜆𝜆2
�𝑣𝑣1,1(−3Δ𝜆𝜆 − 2𝜆𝜆1) + 𝑣𝑣1,2(4Δ𝜆𝜆 + 4𝜆𝜆1) + 𝑣𝑣1,3(−Δ𝜆𝜆 + −2𝜆𝜆1)�, (30) 

𝑐𝑐1 =
1

2Δ𝜆𝜆2
�𝑣𝑣1,1(1) + 𝑣𝑣1,2(−2) + 𝑣𝑣1,3(1)�, (31) 

 
𝑣𝑣𝐴𝐴 =

1
2Δ𝜆𝜆2

�𝑣𝑣1,1(Δ𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆1) + 𝑣𝑣1,2(𝜆𝜆 + 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆1)

− 𝑣𝑣1,3(𝜆𝜆 + 𝜆𝜆1)(Δ𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆1)�. 
(32) 

The process continues, as described above until the value 𝑣𝑣 is evaluated from the final north-
south parabola.  Simplifying the equation yields the weights seen in (33) through (41). 
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𝑤𝑤1,1 =
(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

4Δ𝜆𝜆2Δ𝜙𝜙2  (33) 

𝑤𝑤1,2 =
(𝜆𝜆0 − 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

2Δ𝜆𝜆2Δ𝜙𝜙2  (34) 

𝑤𝑤1,3 = −
(𝜆𝜆0 − 𝜆𝜆1)(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

4Δ𝜆𝜆2Δ𝜙𝜙2  (35) 

𝑤𝑤2,1 =
(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

2Δ𝜆𝜆2Δ𝜙𝜙2  (36) 

𝑤𝑤2,2 =
(𝜆𝜆0 − 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

Δ𝜆𝜆2Δ𝜙𝜙2  (37) 

𝑤𝑤2,3 = −
(𝜆𝜆0 − 𝜆𝜆1)(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(2Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

2Δ𝜆𝜆2Δ𝜙𝜙2  (38) 

𝑤𝑤3,1 = −
(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

4Δ𝜆𝜆2Δ𝜙𝜙2  (39) 

𝑤𝑤3,2 = −
(𝜆𝜆0 − 𝜆𝜆1)(2Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

2Δ𝜆𝜆2Δ𝜙𝜙2  (40) 

𝑤𝑤3,3 =
(𝜆𝜆0 − 𝜆𝜆1)(Δ𝜆𝜆 − 𝜆𝜆0 + 𝜆𝜆1)(𝜙𝜙0 − 𝜙𝜙1)(Δ𝜙𝜙 − 𝜙𝜙0 + 𝜙𝜙1)

4Δ𝜆𝜆2Δ𝜙𝜙2  (41) 

Thus, analogous to bilinear interpolation, biquadratic interpolation may be reduced to a weighted 
sum of grid values, now seen in (42), and using the nine weights listed above. 

𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖

3

𝑗𝑗=1

3

𝑖𝑖=1

 (42) 

As with bilinear, the sum of weights in biquadratic interpolation will always equal 1. 
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